Tremolo-X

 

Software Tremolo-X

TREMOLO-X is a massively parallel and highly efficient software package for molecular dynamics simulations.

 

Brochure

Further information on Tremolo-X:

We offer professional software solutions for numerical simulation in computational material science, computational chemistry and nanotechnology.

Tremolo-X

TREMOLO-X is a powerful software package used for the numerical simulation of interactions between atoms and molecules, the molecular dynamics. It provides the environment to design new innovative materials.

TREMOLO-X uses highly efficient state of the art algorithms for the treatment of short- and long-range potentials, where much emphasis has been placed on the parallel implementation and its efficiency. All potential types are included which are commonly used for modeling of systems in the areas material science, nanotechnology and biophysics.

TREMOLO-X includes also TREMOLO-X-GUI, which is an user-friendly graphical user interface frontend. This provides an easy set-up and analysis of numerical experiments.

TREMOLO-X is already successfully applied in many different practical projects in different areas. The focus is on computations in nanotechnology, material science, biochemistry and biophysics.

 

History

TREMOLO-X has been implemented over the last decade by the research group of Michael Griebel at the INS.

Since 2010 it is further developed by SCAI in cooperation with the INS and is distributed by SCAI and the scapos AG.

Features

  • User-friendly GUI frontend to setup simulations
  • Parallel version for distributed memory computers (MIMD) with the message passing interface (MPI)
  • Implementation of reactive many body potentials, like e.g. ReaxFF, COMB, COMB3, Brenner, Marian, Tersoff, Feuston-Garofalini, Stillinger-Weber and Sutton-Chen
  • Implementation of several core shell models (also anistropic)
  • Implementation of fixed bond, angle, torsion (dihedral) and inversion potentials
  • NVE, NVT and NPT ensemble, structural optimization and dissipative particle dynamics (DPD)
  • Several time integrators and local optimizers: Verlet, multistep like Beeman-Verlet as well as Fletcher-Reeves and Polak-Ribière
  • Replica exchange methods like Hybrid Monte Carlo and Parallel Tempering
  • Computation of many measuring quantities, e.g. diffusion coefficients, stress-strain diagrams, elastic constants, distribution functions, correlation functions and shortest-path-ring statistics
  • Fast implementation of short-range potentials via linked-cell method and parallelization by dynamic load-balanced domain decomposition
  • Fast algorithms for long-range potentials: Particle-Mesh-Ewald with domain decomposition and parallel 3D-FFT and parallel multigrid. Also Barnes-Hut/fast multiple methods and parallelisation by space-filling curves
  • Including various parameter sets

Bending of NTs

Stretching of NTs

CNT Composites

Nanotube Templates

BN-NT Composites

Droplets on surface

Tobacco Mosaic Virus

Calcium Silicate Hydrates

Tremolo-X supports many different potential types. In addition it includes various different parameters sets for different systems and purposes.

 

A selected list is given in the following:

Ag [ATVF87,SKC+11,WMH06,ZJW04]
Ag, Al [SKC+11]
Ag, Al, Au, Co, Cu, Fe, Mg, Mo, Ni, Pb, Pd, Pt, Ta, Ti, W, Zr [ZJW04]
Ag, Al, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh [RTS91]
Ag, Al, Ba, Be, Ca, Co, Cr, Cu, Er, Fe, Gd, Ge, K, Li, Mg, Mn, Na, Nd, Ni, O, P, Sc, Si, Sn, Sr, Ti, Zn, Zr [PMM+06]
Ag, Au, Cu, Ir, Ni, Pd, Pt, Rh [KQCG98]
Ag, Au, Cu, Ni, Pt, Rh [CDUT99]
Ag, Cu [WMH06,WT09]
Ag, Cu, Zr [FGS+10,SKC+11]
Ag, H, Pd [HWZZ13]
Al [LEA04,MKBA08,MFMP99,SKC+11,SL00,WKG09,ZJW04,ZM03]
Al, As, Ga [NNFK00]
Al, As, Ga, In, N, P, Sb [PMC07b]
Al, C, Ca, Cs, Cu, H, K, Mg, N, Na, O, S, Si, Sr [PMJvD15]
Al, C, Ca, H, O, S, Si [LJBGIS12]
Al, Ca, Fe, K, Mg, Na, O, Si, Ti [GS07]
Al, Ca, Mg, O, Si [JM07,Mat94]
Al, Ca, Na, O, Si [PGM12]
Al, Cu [SKC+11]
Al, Cu, N, O, Si, Ti, W [IM01]
Al, Cu, Zr [CMS09,SKC+11]
Al, Fe [MSAH05]
Al, H, Li, O, Si [NvDK+12]
Al, H, Ni [AMB95,BSAM97]
Al, Mg [LOA+97,MARH09]
Al, Mn, Pd [SBFT12]
Al, N, O [OL09]
Al, Nb, Ti [FJ96]
Al, Ni [KT08,MMP02,Mis04,PPM09]
Al, O [SFT13]
Al, O, P, Si [VBKVS90]
Al, O, Si [JC88]
Al, Pb [LWS+00]
Al, Sm [MZY+15]
Al, Ti [ZM03]
Al, Zr [SKC+11]
As, Ga [ANNK02,FTH+11,HKS08]
As, Ga, In [NNFK00]
As, In [HKS08]
Au [ATVF87,BJN12,GRS05,Ols10,SKC+11,ZJW04]
Au, H, O [KFJvD10]
B, C, N [MFM00]
B, H, N, O [WDLY10]
B, H, N, Si [MG00]
B, N [MSH03,MH05,MSH07]
B, N, O [OL09]
B, N, Si [GGM03,MI01]
Ba, C, H, N, O, Pt, Si, Ti, Y, Zr [NLGI+13]
Be, C, H [BJT+09]
Be, H [BJT+09]
Be, W [BHPN10]
C [BS12,EA05,LB10,SvDG15,Ter94,Ter89]
C, Cl, F, H, N, Ni, O, Pt, S [MvDG10]
C, Co, Cu, H, N, Ni, O, Pt, S, Si, Zr [NvDO+05]
C, Cr, Fe, H, O, S [SKV+15]
C, Fe [HN09,HA08]
C, Fe, H, O [AvDK10]
C, Ge, Si [Kea66,Mar70]
C, H [JET+05,LB10]
C, H, N, O [BTZ09,SvDC+03]
C, H, N, O, S [MLC+10]
C, H, N, O, S, Si [KTGS+12,NSF+12,ZZvD+09]
C, H, N, O, Ti [JBAC+12]
C, H, Ni, O [TSZ+15]
C, H, O [CvDG08]
C, H, O, Si [CCVD+05]
C, H, O, V [CvDG08]
C, H, W [EA05,JET+05]
C, Pt [ANA02]
C, Si [DDdlRW98,EA05,Ter90,Ter94,Ter89]
Ca [SKC+11]
Ca, F [MF93]
Ca, F, Na, O, P, Si [LMC+08]
Ca, H, O, Si [DGH07,FG90,LG01,SG04]
Cd, Hg, S, Se, Te, Zn [ZWM+13]
Ce [SKC+11]
Cl, Na [MF93,AFN03]
Co [PM12,ZJW04]
Cr, Fe, Ni [BCT13]
Cu [ATVF87,MKBA08,MMP+01,SKC+11,ZJW04]
Cu, Fe [HWW+12]
Cu, Fe, Ni [BPCM09]
Cu, Mg [SKC+11]
Cu, Zr [MSK07,MKO+09,SKC+11]
Er, H [PYL+11]
Fe [ABCH97,BAJ00,MHS+03,MEA07,ZJW04]
Fe, Ni [BPM09,ME95]
Fe, P [AMS+04]
Fe, Pt [MKA07]
Fe, V [MHS+07]
Ga, In, N [ZJ15,ZCG+11]
Ga, N [NAEN03]
Ga, N, O [OL09]
Ge, O [MSM+09]
Ge, O, Si [CLL+13]
Ge, Si [Gab08,LLD95,Ter90,Ter89]
H, He, W [BGT14]
H, N, O, Si [BCFA06]
H, N, Si [dBMJF99]
H, O [PISS12]
H, O, Si [Yas96]
H, O, Zn [RvDS+10]
H, Pd [SJvD14,ZZWH08]
H, W [LSL+11]
Hf, O [AVJ15]
Hf, O, Si [BOLM14]
Hf, O, Si, Ta, Ti [THW+13]
Hf, O, Zr [WZWG12]
In, N, O [OL09]
Ir [SKC+11]
K, Li, Na, O, Si [PMC+07a]
Li, Nb, O [AVJ15]
Li, O, Ti [KRYL10]
Li, S [IOB+15]
Mg [SMB+06,ZJW04]
Mg, O [MF93]
Mg, O, Si [LN88,MAM87]
Mg, Ti [SKC+11]
Mg, Y [SKC+11]
Mo [ZJW04]
Mo, S [JPR13]
Mo, U, Xe [SKS+13]
N, Ti [CLM+14]
Na [WGM15]
Nb [FPW10]
Ni [ATVF87,MKH+12,MFMP99,SKC+11,ZJW04]
Ni, P [SKC+11]
Ni, Zr [MKH+12,SKC+11,WM15]
O [EJG+06]
O, Si [SDH+10,MMMS07,TS02,Yas03,YSP07]
O, Ti [MA91,HBD+10]
O, Y, Zr [SPW01]
O, Zn [EJG+06,NNP+96]
Pb [SKC+11,ZJW04]
Pd [SKC+11,ZJW04]
Pd, Si [SKC+11]
Pt [ANA02,SKC+11,ZJW04]
Pt, Zr [SKC+11]
Rh [SKC+11]
Ru [FMBS08]
Se [OJRS96]
Si [EA05,SW85,Ter88a,Ter88b]
Sr [SKC+11]
Ta [LSAL03,RGG+13,SKC+11,ZJW04]
Ti [Ack92,MUABP,ZJW04]
U [SSS12]
W [ZJW04]
Zn [EJG+06]
Zr [SKC+11,ZJW04]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABCH97
GJ Ackland, DJ Bacon, AF Calder, and T Harry.
Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential.
Philosophical Magazine A, 75(3):713-732, 1997.

 

Ack92
Graeme J Ackland.
Theoretical study of titanium surfaces and defects with a new many-body potential.
Philosophical Magazine A, 66(6):917-932, 1992.

 

AFN03 α
Jamshed Anwar, Daan Frenkel, and Massimo G. Noro.
Calculation of the melting point of NaCl by molecular simulation.
The Journal of Chemical Physics, 118(2):728-735, 2003.

 

AMB95
James E Angelo, Neville R Moody, and Michael I Baskes.
Trapping of hydrogen to lattice defects in nickel.
Modelling and Simulation in Materials Science and Engineering, 3(3):289, 1995.

 

AMS+04
GJ Ackland, MI Mendelev, DJ Srolovitz, S Han, and AV Barashev.
Development of an interatomic potential for phosphorus impurities in α-iron.
Journal of Physics: Condensed Matter, 16(27):S2629, 2004.

 

ANA02
Karsten Albe, Kai Nordlund, and Robert S Averback.
Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon.
Physical Review B, 65(19):195124, 2002.

 

ANNK02
Karsten Albe, Kai Nordlund, Janne Nord, and Antti Kuronen.
Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs.
Physical Review B, 66(3):035205, 2002.

 

ATVF87
GJ Ackland, G Tichy, V Vitek, and MW Finnis.
Simple n-body potentials for the noble metals and nickel.
Philosophical Magazine A, 56(6):735-756, 1987.

 

AvDK10
Masoud Aryanpour, Adri C. T. van Duin, and James D. Kubicki.
Development of a reactive force field for iron−oxyhydroxide systems.
The Journal of Physical Chemistry A, 114(21):6298-6307, 2010.
PMID: 20455552.

 

AVJ15
R. M. Araujo, M. E. G. Valerio, and R. A. Jackson.
Computer modelling of hafnium doping in lithium niobate.
ArXiv e-prints, May 2015.

 

BAJ00
Anatoly B Belonoshko, R Ahuja, and Börje Johansson.
Quasi-ab initio molecular dynamic study of Fe melting.
Physical Review Letters, 84(16):3638, 2000.

 

BCFA06
Salomon R. Billeter, Alessandro Curioni, Dominik Fischer, and Wanda Andreoni.
Ab initio derived augmented Tersoff potential for silicon oxynitride compounds and their interfaces with silicon.
Phys. Rev. B, 73:155329, Apr 2006.

 

BCT13
G Bonny, N Castin, and D Terentyev.
Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy.
Modelling and Simulation in Materials Science and Engineering, 21(8):085004, 2013.

 

BGT14
Giovanni Bonny, Petr Grigorev, and Dmitry Terentyev.
On the binding of nanometric hydrogen-helium clusters in tungsten.
Journal of Physics: Condensed Matter, 26(48):485001, 2014.

 

BHPN10
C Björkas, KOE Henriksson, M Probst, and K Nordlund.
A Be-W interatomic potential.
Journal of Physics: Condensed Matter, 22(35):352206, 2010.

 

BJN12
M Backman, N Juslin, and K Nordlund.
Bond order potential for gold.
The European Physical Journal B, 85(9):1-5, 2012.

 

BJT+09
C Björkas, N Juslin, H Timko, K Vörtler, K Nordlund, K Henriksson, and P Erhart.
Interatomic potentials for the Be-C-H system.
Journal of Physics: Condensed Matter, 21(44):445002, 2009.

 

BOLM14
G Broglia, G Ori, L Larcher, and M Montorsi.
Molecular dynamics simulation of amorphous HfO 2 for resistive RAM applications.
Modelling and Simulation in Materials Science and Engineering, 22(6):065006, 2014.

 

BPCM09
Giovanni Bonny, Roberto C Pasianot, Nicolas Castin, and Lorenzo Malerba.
Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing.
Philosophical Magazine, 89(34-36):3531-3546, 2009.

 

BPM09
Giovanni Bonny, RC Pasianot, and Lorenzo Malerba.
Fe-Ni many-body potential for metallurgical applications.
Modelling and Simulation in Materials Science and Engineering, 17(2):025010, 2009.

 

BS12
Edson P. Bellido and Jorge M. Seminario.
Molecular dynamics simulations of ion-bombarded graphene.
The Journal of Physical Chemistry C, 116(6):4044-4049, 2012.

 

BSAM97
MI Baskes, Xianwei Sha, JE Angelo, and NR Moody.
Trapping of hydrogen to lattice defects in nickel.
Modelling and Simulation in Materials Science and Engineering, 5(6):651, 1997.

 

BTZ09
Joanne Budzien, Aidan P Thompson, and Sergey V Zybin.
Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrate.
The Journal of Physical Chemistry B, 113(40):13142-13151, 2009.

 

CCVD+05
Kimberly Chenoweth, Sam Cheung, Adri CT Van Duin, William A Goddard, and Edward M Kober.
Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field.
Journal Of The American Chemical Society, 127(19):7192-7202, 2005.

 

CDUT99
T Cagin, G Dereli, M Uludoğan, and M Tomak.
Thermal and mechanical properties of some FCC transition metals.
Physical Review B, 59(5):3468, 1999.

 

CLL+13
Claire Y Chuang, Qiming Li, Darin Leonhardt, Sang M Han, and Talid Sinno.
Atomistic analysis of Ge on amorphous SiO2 using an empirical interatomic potential.
Surface Science, 609:221-229, 2013.

 

CLM+14
Y-T Cheng, T Liang, J A Martinez, S R Phillpot, and S B Sinnott.
A charge optimized many-body potential for titanium nitride (TiN).
Journal of Physics: Condensed Matter, 26(26):265004, 2014.

 

CMS09
YQ Cheng, E Ma, and HW Sheng.
Atomic level structure in multicomponent bulk metallic glass.
Physical review letters, 102(24):245501, 2009.

 

CvDG08
Kimberly Chenoweth, Adri CT van Duin, and William A Goddard.
ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation.
The Journal of Physical Chemistry A, 112(5):1040-1053, 2008.

 

dBMJF99
F de Brito Mota, JF Justo, and A Fazzio.
Hydrogen role on the properties of amorphous silicon nitride.
Journal of applied physics, 86(4):1843-1847, 1999.

 

DDdlRW98
R Devanathan, T Diaz de la Rubia, and WJ Weber.
Displacement threshold energies in β-SiC.
Journal of nuclear materials, 253(1):47-52, 1998.

 

DGH07
Jorge S Dolado, Michael Griebel, and Jan Hamaekers.
A molecular dynamic study of cementitious calcium silicate hydrate (C-S-H) gels.
Journal of the American Ceramic Society, 90(12):3938-3942, 2007.

 

EA05
P. Erhart and K. Albe.
Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide.
Physical Review B, 71(3):035211, 2005.

 

EJG+06
Paul Erhart, Niklas Juslin, Oliver Goy, Kai Nordlund, Ralf Müller, and Karsten Albe.
Analytic bond-order potential for atomistic simulations of zinc oxide.
Journal of Physics: Condensed Matter, 18(29):6585, 2006.

 

FG90
BP Feuston and SH Garofalini.
Onset of polymerization in silica sols.
Chemical physics letters, 170(2):264-270, 1990.

 

FGS+10
T Fujita, PF Guan, HW Sheng, A Inoue, T Sakurai, and MW Chen.
Coupling between chemical and dynamic heterogeneities in a multicomponent bulk metallic glass.
Physical Review B, 81(14):140204, 2010.

 

FJ96
Diana Farkas and Chris Jones.
Interatomic potentials for ternary Nb-Ti-Al alloys.
Modelling and Simulation in Materials Science and Engineering, 4(1):23, 1996.

 

FMBS08
Andrea Fortini, Mikhail I Mendelev, Sergey Buldyrev, and David Srolovitz.
Asperity contacts at the nanoscale: Comparison of Ru and Au.
Journal of Applied Physics, 104(7):074320-074320, 2008.

 

FPW10
Michael R Fellinger, Hyoungki Park, and John W Wilkins.
Force-matched embedded-atom method potential for niobium.
Physical Review B, 81(14):144119, 2010.

 

FTH+11
Kristen A Fichthorn, Yogesh Tiwary, Thomas Hammerschmidt, Peter Kratzer, and Matthias Scheffler.
Analytic many-body potential for GaAs (001) homoepitaxy: Bulk and surface properties.
Physical Review B, 83(19):195328, 2011.

 

Gab08
Alice-Agnes Gabriel.
Atomistic simulation of solid-phase epitaxial regrowth of amorphous Germanium.
Diplomarbeit, Technischer Universitaet Dresden, 2008.

 

GGM03
Marcus Gastreich, Julian D Gale, and Christel M Marian.
Charged-particle potential for boron nitrides, silicon nitrides, and borosilazane ceramics: Derivation of parameters and probing of capabilities.
Physical Review B, 68(9):094110, 2003.

 

GRS05
Gregory Grochola, Salvy P Russo, and Ian K Snook.
On fitting a gold embedded atom method potential using the force matching method.
The Journal of chemical physics, 123:204719, 2005.

 

GS07
"Bertrand Guillot and Nicolas Sator".
A computer simulation study of natural silicate melts. part i: Low pressure properties.
Geochimica et Cosmochimica Acta, 71(5):1249 - 1265, 2007.

 

HA08
Derek J Hepburn and Graeme J Ackland.
Metallic-covalent interatomic potential for carbon in iron.
Physical Review B, 78(16):165115, 2008.

 

HBD+10
X. J. Han, L. Bergqvist, P. H. Dederichs, H. Müller-Krumbhaar, J. K. Christie, S. Scandolo, and P. Tangney.
Polarizable interatomic force field for TiO2 parametrized using density functional theory.
Phys. Rev. B, 81:134108, Apr 2010.

 

HKS08
Thomas Hammerschmidt, P Kratzer, and M Scheffler.
Analytic many-body potential for InAs/GaAs surfaces and nanostructures: Formation energy of InAs quantum dots.
Physical Review B, 77(23):235303, 2008.

 

HN09
Krister OE Henriksson and K Nordlund.
Simulations of cementite: An analytical potential for the Fe-C system.
Physical Review B, 79(14):144107, 2009.

 

HWW+12
Huai Yu Hou, Rong Shan Wang, Jing Tao Wang, Xiang Bing Liu, Guang Chen, and Ping Huang.
An analytic bond-order potential for the Fe-Cu system.
Modelling and Simulation in Materials Science and Engineering, 20(4):045016, 2012.

 

HWZZ13
Lucas Michael Hale, Bryan Matthew Wong, Jonathan A Zimmerman, and XW Zhou.
Atomistic potentials for palladium-silver hydrides.
Modelling and Simulation in Materials Science and Engineering, 21(4):045005, 2013.

 

IM01
T. Iwasaki and H. Miura.
Molecular dynamics analysis of adhesion strength of interfaces between thin films.
Journal of Materials Research, 16:1789-1794, 6 2001.

 

IOB+15
Md Mahbubul Islam, Alireza Ostadhossein, Oleg Borodin, A Todd Yeates, William W Tipton, Richard G Hennig, Nitin Kumar, and Adri CT van Duin.
ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials.
Physical Chemistry Chemical Physics, 17(5):3383-3393, 2015.

 

JBAC+12
Andres Jaramillo-Botero, Qi An, Mu-Jeng Cheng, William A Goddard III, Luther W Beegle, and Robert Hodyss.
Hypervelocity impact effect of molecules from Enceladus’ plume and Titan’s upper atmosphere on NASA’s Cassini spectrometer from reactive dynamics simulation.
Physical review letters, 109(21):213201, 2012.

 

JC88
R. A. Jackson and C. R. A. Catlow.
Computer simulation studies of zeolite structure.
Molecular Simulation,, 1(4):207-224, 1988.

 

JET+05
N Juslin, P Erhart, P Traskelin, J Nord, Krister OE Henriksson, K Nordlund, E Salonen, and K Albe.
Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system.
Journal of applied physics, 98(12):123520-123520, 2005.

 

JM07
Sandro Jahn and Paul A. Madden.
Modeling earth materials from crustal to lower mantle conditions: A transferable set of interaction potentials for the CMAS system.
Physics of the Earth and Planetary Interiors, 162(1–2):129 - 139, 2007.

 

JPR13
Jin-Wu Jiang, Harold S Park, and Timon Rabczuk.
Molecular dynamics simulations of single-layer molybdenum disulphide (Mo S2): Stillinger-weber parametrization, mechanical properties, and thermal conductivity.
Journal of Applied Physics, 114(6):064307, 2013.

 

Kea66
P. N. Keating.
Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure.
Phys. Rev., 145:637-645, May 1966.

 

KFJvD10
John A. Keith, Donato Fantauzzi, Timo Jacob, and Adri C. T. van Duin.
Reactive forcefield for simulating gold surfaces and nanoparticles.
Phys. Rev. B, 81:235404, Jun 2010.

 

KQCG98
Yoshitaka Kimura, Yue Qi, Tahir Cagin, and WA Goddard.
The quantum Sutton-Chen many-body potential for properties of fcc metals.
Phys. Rev., to be submitted, 1998.

 

KRYL10
Sebastien Kerisit, Kevin M. Rosso, Zhenguo Yang, and Jun Liu.
Computer simulation of the phase stabilities of lithiated TiO2 polymorphs.
The Journal of Physical Chemistry C, 114(44):19096-19107, 2010.

 

KT08
Sefa Kazanc and Cengiz Tatar.
Investigation of the effect of pressure on some physical parameters and thermoelastic phase transformation of NiAl alloy.
International Journal of Solids and Structures, 45(11):3282-3289, 2008.

 

KTGS+12
Anant D Kulkarni, Donald G Truhlar, Sriram Goverapet Srinivasan, Adri CT van Duin, Paul Norman, and Thomas E Schwartzentruber.
Oxygen interactions with silica surfaces: Coupled cluster and density functional investigation and the development of a new ReaxFF potential.
The Journal of Physical Chemistry C, 117(1):258-269, 2012.

 

LB10
L Lindsay and DA Broido.
Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene.
Physical Review B, 81(20):205441, 2010.

 

LEA04
Xiang-Yang Liu, Furio Ercolessi, and James B Adams.
Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy.
Modelling and Simulation in Materials Science and Engineering, 12(4):665, 2004.

 

LG01
David A Litton and Stephen H Garofalini.
Modeling of hydrophilic wafer bonding by molecular dynamics simulations.
Journal of Applied Physics, 89(11):6013-6023, 2001.

 

LJBGIS12
Lianchi Liu, Andres Jaramillo-Botero, William A Goddard III, and Huai Sun.
Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations.
The Journal of Physical Chemistry A, 116(15):3918-3925, 2012.

 

LLD95
Mohamed Laradji, DP Landau, and B Dünweg.
Structural properties of Si1-xGex alloys: A Monte Carlo simulation with the Stillinger-Weber potential.
Physical Review B, 51(8):4894, 1995.

 

LMC+08
G Lusvardi, G Malavasi, M Cortada, L Menabue, M C Menziani, A Pedone, and U Segre.
Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation.
J Phys Chem B, 112(40):12730-9, 2008.

 

LN88
Kurt Leinenweber and Alexandra Navrotsky.
A transferable interatomic potential for crystalline phases in the system MgO-SiO2.
Physics and Chemistry of Minerals, 15(6):588-596, 1988.

 

LOA+97
Xiang-Yang Liu, PP Ohotnicky, JB Adams, C Lane Rohrer, and RW Hyland Jr.
Anisotropic surface segregation in Al Mg alloys.
Surface science, 373(2):357-370, 1997.

 

LSAL03
Youhong Li, Donald J Siegel, James B Adams, and Xiang-Yang Liu.
Embedded-atom-method tantalum potential developed by the force-matching method.
Physical Review B, 67(12):125101, 2003.

 

LSL+11
Xiao-Chun Li, Xiaolin Shu, Yi-Nan Liu, Fei Gao, and Guang-Hong Lu.
Modified analytical interatomic potential for a W-H system with defects.
Journal of Nuclear Materials, 408(1):12-17, 2011.

 

LWS+00
A Landa, P Wynblatt, DJ Siegel, JB Adams, ON Mryasov, and X-Y Liu.
Development of glue-type potentials for the Al-Pb system: phase diagram calculation.
Acta materialia, 48(8):1753-1761, 2000.

 

MA91
Masanori Matsui and Masaki Akaogi.
Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2.
Molecular Simulation, 6(4-6):239-244, 1991.

 

MAM87
Masanori Matsui, Masaki Akaogi, and Takeo Matsumoto.
Computational model of the structural and elastic properties of the ilmenite and perovskite phases of MgSiO3.
Physics and Chemistry of Minerals, 14(2):101-106, 1987.

 

Mar70
Richard M. Martin.
Elastic properties of ZnS structure semiconductors.
Phys. Rev. B, 1:4005-4011, May 1970.

 

MARH09
MI Mendelev, M Asta, MJ Rahman, and JJ Hoyt.
Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys.
Philosophical Magazine, 89(34-36):3269-3285, 2009.

 

Mat94
M. Matsui.
A transferable interatomic potential model for crystals and melts in the system CaO-MgO-Al2O3-SiO2.
MinMag, 58:571-572, 1994.

 

ME95
R Meyer and P Entel.
Molecular dynamics study of iron-nickel alloys.
Le Journal de Physique IV, 5(C2):C2-123, 1995.

 

MEA07
M. Müller, P. Erhart, and K. Albe.
Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials.
Journal of Physics: Condensed Matter, 19(32):326220, 2007.

 

MF93
P. J. Mitchell and D. Fincham.
Shell model simulations by adiabatic dynamics.
Journal of Physics: Condensed Matter, 5(8):1031-1038, 1993.

 

MFM00
Katsuyuki Matsunaga, Craig Fisher, and Hideaki Matsubara.
Tersoff potential parameters for simulating cubic boron carbonitrides.
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2 LETTERS, 39(1A/B):L48-L51, 2000.

 

MFMP99
Y Mishin, D Farkas, MJ Mehl, and DA Papaconstantopoulos.
Interatomic potentials for monoatomic metals from experimental data and ab initio calculations.
Physical Review B, 59(5):3393, 1999.

 

MG00
Christel M Marian and Marcus Gastreich.
A systematic theoretical study of molecular Si/N, B/N, and Si/B/N(H) compounds and parameterisation of a force-field for molecules and solids.
Journal of Molecular Structure: THEOCHEM, 506(1):107-129, 2000.

 

MH05
Won Ha Moon and Ho Jung Hwang.
A modified Stillinger-Weber empirical potential for boron nitride.
Applied surface science, 239(3):376-380, 2005.

 

MHS+03
MI Mendelev, S Han, DJ Srolovitz, GJ Ackland, DY Sun, and M Asta.
Development of new interatomic potentials appropriate for crystalline and liquid iron.
Philosophical magazine, 83(35):3977-3994, 2003.

 

MHS+07
Mikhail I Mendelev, Seungwu Han, Won-joon Son, Graeme J Ackland, and David J Srolovitz.
Simulation of the interaction between Fe impurities and point defects in V.
Physical Review B, 76(21):214105, 2007.

 

MI01
Katsuyuki Matsunaga and Yuji Iwamoto.
Molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron.
Journal of the American Ceramic Society, 84(10):2213-2219, 2001.

 

Mis04
Yuri Mishin.
Atomistic modeling of the γ and γ'-phases of the Ni-Al system.
Acta materialia, 52(6):1451-1467, 2004.

 

MKA07
M. Müller, P. Erhart K., and Albe.
Thermodynamics of L 10 ordering in FePt nanoparticles studied by Monte Carlo simulations based on an analytic bond-order potential.
Physical Review B, 76(15):155412, 2007.

 

MKBA08
MI Mendelev, MJ Kramer, CA Becker, and M Asta.
Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu.
Philosophical Magazine, 88(12):1723-1750, 2008.

 

MKH+12
MI Mendelev, MJ Kramer, SG Hao, KM Ho, and CZ Wang.
Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy.
Philosophical Magazine, 92(35):4454-4469, 2012.

 

MKO+09
MI Mendelev, MJ Kramer, RT Ott, DJ Sordelet, D Yagodin, and P Popel.
Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys.
Philosophical Magazine, 89(11):967-987, 2009.

 

MLC+10
Thomas R. Mattsson, J. Matthew D. Lane, Kyle R. Cochrane, Michael P. Desjarlais, Aidan P. Thompson, Flint Pierce, and Gary S. Grest.
First-principles and classical molecular dynamics simulation of shocked polymers.
Phys. Rev. B, 81:054103, Feb 2010.

 

MMMS07
S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani.
Interatomic potential for Si-O systems using Tersoff parameterization.
Computational materials science, 39(2):334-339, 2007.

 

MMP+01
Yu Mishin, MJ Mehl, DA Papaconstantopoulos, AF Voter, and JD Kress.
Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations.
Physical Review B, 63(22):224106, 2001.

 

MMP02
Y Mishin, MJ Mehl, and DA Papaconstantopoulos.
Embedded-atom potential for B2-NiAl.
Physical Review B, 65(22):224114, 2002.

 

MSAH05
M. I. Mendelev, D. J. Srolovitz, G. J. Ackland, and S. Han.
Effect of Fe segregation on the migration of a non-symmetric ∑5 tilt grain boundary in Al.
J. Mater. Res., 20(1):208-218, January 2005.

 

MSH03
Won Ha Moon, Myung Sik Son, and Ho Jung Hwang.
Molecular-dynamics simulation of structural properties of cubic boron nitride.
Physica B: Condensed Matter, 336(3):329-334, 2003.

 

MSH07
Won Ha Moon, Myung Sik Son, and Ho Jung Hwang.
Theoretical study on structure of boron nitride fullerenes.
Applied surface science, 253(17):7078-7081, 2007.

 

MSK07
MI Mendelev, DJ Sordelet, and MJ Kramer.
Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses.
Journal of Applied Physics, 102(4):043501-043501, 2007.

 

MSM+09
D. Marrocchelli, M. Salanne, P.A. Madden, C. Simon, and P. Turq.
The construction of a reliable potential for GeO2 from first principles.
Molecular Physics, 107(4-6):443-452, 2009.

 

MUABP
M.I. Mendelev, T.L. Underwood, and G.J. Ackland.
Interatomic potentials for the simulation of defects, plasticity and phase transformations in titanium, TBP.

 

MvDG10
Jonathan E. Mueller, Adri C. T. van Duin, and William A. Goddard.
Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel.
The Journal of Physical Chemistry C, 114(11):4939-4949, 2010.

 

MZY+15
MI Mendelev, F Zhang, Z Ye, Y Sun, MC Nguyen, SR Wilson, CZ Wang, and KM Ho.
Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10 alloy.
Modelling and Simulation in Materials Science and Engineering, 23(4):045013, 2015.

 

NAEN03
J. Nord, K. Albe, P. Erhart, and K. Nordlund.
Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride.
Journal of Physics: Condensed Matter, 15(32):5649, 2003.

 

NLGI+13
Saber Naserifar, Lianchi Liu, William A Goddard III, Theodore T Tsotsis, and Muhammad Sahimi.
Toward a process-based molecular model of sic membranes. 1. development of a reactive force field.
The Journal of Physical Chemistry C, 117(7):3308-3319, 2013.

 

NNFK00
K Nordlund, J Nord, J Frantz, and J Keinonen.
Strain-induced Kirkendall mixing at semiconductor interfaces.
Computational materials science, 18(3):283-294, 2000.

 

NNP+96
Mats Nyberg, Martin A Nygren, Lars GM Pettersson, David H Gay, and Andrew L Rohl.
Hydrogen dissociation on reconstructed ZnO surfaces.
The Journal of Physical Chemistry, 100(21):9054-9063, 1996.

 

NSF+12
David A Newsome, Debasis Sengupta, Hosein Foroutan, Michael F Russo, and Adri CT van Duin.
Oxidation of Silicon Carbide by O2 and H2O: A ReaxFF Reactive Molecular Dynamics Study, Part I.
The Journal of Physical Chemistry C, 116(30):16111-16121, 2012.

 

NvDK+12
Badri Narayanan, Adri CT van Duin, Branden B Kappes, Ivar E Reimanis, and Cristian V Ciobanu.
A reactive force field for lithium-aluminum silicates with applications to eucryptite phases.
Modelling and Simulation in Materials Science and Engineering, 20(1):015002, 2012.

 

NvDO+05
Kevin D Nielson, Adri CT van Duin, Jonas Oxgaard, Wei-Qiao Deng, and William A Goddard.
Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes.
The Journal of Physical Chemistry A, 109(3):493-499, 2005.

 

OJRS96
C. Oligschleger, R. O. Jones, S. M. Reimann, and H. R. Schober.
Model interatomic potential for simulations in selenium.
Phys. Rev. B, 53:6165-6173, Mar 1996.

 

OL09
Onyekwelu U Okeke and JE Lowther.
Molecular dynamics of binary metal nitrides and ternary oxynitrides.
Physica B: Condensed Matter, 404(20):3577-3581, 2009.

 

Ols10
Pär AT Olsson.
Transverse resonant properties of strained gold nanowires.
Journal of Applied Physics, 108(3):034318, 2010.

 

PGM12
Alfonso Pedone, Elisa Gambuzzi, and Maria Cristina Menziani.
Unambiguous description of the oxygen environment in multicomponent aluminosilicate glasses from 17O solid state NMR computational spectroscopy.
The Journal of Physical Chemistry C, 116(27):14599-14609, 2012.

 

PISS12
Carlos Pinilla, Amir H. Irani, Nicola Seriani, and Sandro Scandolo.
Ab initio parameterization of an all-atom polarizable and dissociable force field for water.
The Journal of Chemical Physics, 136(11), 2012.

 

PM12
GP Purja Pun and Y Mishin.
Embedded-atom potential for hcp and fcc cobalt.
Physical Review B, 86(13):134116, 2012.

 

PMC+07a
Alfonso Pedone, Gianluca Malavasi, Alastair N Cormack, Ulderico Segre, and M Cristina Menziani.
Insight into elastic properties of binary alkali silicate glasses; prediction and interpretation through atomistic simulation techniques.
Chemistry of materials, 19(13):3144-3154, 2007.

 

PMC07b
D Powell, MA Migliorato, and AG Cullis.
Optimized Tersoff potential parameters for tetrahedrally bonded III-V semiconductors.
Physical Review B, 75(11):115202, 2007.

 

PMJvD15
George M Psofogiannakis, John F McCleerey, Eugenio Jaramillo, and Adri CT van Duin.
ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers.
The Journal of Physical Chemistry C, 119(12):6678-6686, 2015.

 

PMM+06
A. Pedone, G. Malavasi, M. Menziani, A. Cormack, and U. Segre.
A new self-consistent empirical interatomic potential model for oxides, silicates and silica-based glasses.
J. Phys. Chem. B, 110:11780-11795, 2006.

 

PPM09
GP Purja Pun and Y Mishin.
Development of an interatomic potential for the Ni-Al system.
Philosophical Magazine, 89(34-36):3245-3267, 2009.

 

PYL+11
SM Peng, Li Yang, XG Long, HH Shen, Qing-Qiang Sun, XT Zu, and Fei Gao.
Bond-order potential for erbium-hydride system.
The Journal of Physical Chemistry C, 115(50):25097-25104, 2011.

 

RGG+13
R Ravelo, TC Germann, O Guerrero, Q An, and BL Holian.
Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations.
Physical Review B, 88(13):134101, 2013.

 

RTS91
H Rafii-Tabar and AP Sulton.
Long-range Finnis-Sinclair potentials for fcc metallic alloys.
Philosophical Magazine Letters, 63(4):217-224, 1991.

 

RvDS+10
David Raymand, Adri C.T. van Duin, Daniel Spångberg, William A. Goddard III, and Kersti Hermansson.
Water adsorption on stepped ZnO surfaces from MD simulation.
Surface Science, 604(9–10):741 - 752, 2010.

 

SBFT12
Daniel Schopf, Peter Brommer, Benjamin Frigan, and Hans-Rainer Trebin.
Embedded atom method potentials for Al-Pd-Mn phases.
Physical Review B, 85(5):054201, 2012.

 

SDH+10
Tzu-Ray Shan, Bryce D. Devine, Jeffery M. Hawkins, Aravind Asthagiri, Simon R. Phillpot, and Susan B. Sinnott.
Second-generation charge-optimized many-body potential for Si/SiO2 and amorphous silica.
Phys. Rev. B, 82:235302, Dec 2010.

 

SFT13
Joanne Sarsam, Michael W. Finnis, and Paul Tangney.
Atomistic force field for alumina fit to density functional theory.
The Journal of Chemical Physics, 139(20):204704, 2013.

 

SG04
Xiaotao Su and Stephen H Garofalini.
Role of nitrogen on the atomistic structure of the intergranular film in silicon nitride: A molecular dynamics study.
Journal of materials research, 19(12):3679-3687, 2004.

 

SJvD14
Thomas P Senftle, Michael J Janik, and Adri CT van Duin.
A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations.
The Journal of Physical Chemistry C, 118(9):4967-4981, 2014.

 

SKC+11
HW Sheng, MJ Kramer, A Cadien, T Fujita, and MW Chen.
Highly optimized embedded-atom-method potentials for fourteen fcc metals.
Physical Review B, 83(13):134118, 2011.

 

SKS+13
DE Smirnova, A Yu Kuksin, SV Starikov, VV Stegailov, Z Insepov, J Rest, and AM Yacout.
A ternary EAM interatomic potential for U-Mo alloys with xenon.
Modelling and Simulation in Materials Science and Engineering, 21(3):35011-35034, 2013.

 

SKV+15
Yun Kyung Shin, Hyunwook Kwak, Alex V Vasenkov, Debasis Sengupta, and Adri CT van Duin.
Development of a ReaxFF reactive force field for Fe/Cr/O/S and application to oxidation of butane over a pyrite-covered Cr2O3 catalyst.
ACS Catalysis, 5(12):7226-7236, 2015.

 

SL00
Jess B Sturgeon and Brian B Laird.
Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum.
Physical Review B, 62(22):14720, 2000.

 

SMB+06
DY Sun, MI Mendelev, CA Becker, K Kudin, Tomorr Haxhimali, M Asta, JJ Hoyt, A Karma, and DJ Srolovitz.
Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg.
Physical Review B, 73(2):024116, 2006.

 

SPW01
Patrick K. Schelling, Simon R. Phillpot, and Dieter Wolf.
Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation.
Journal of the American Ceramic Society, 84(7):1609-1619, 2001.

 

SSS12
DE Smirnova, SV Starikov, and VV Stegailov.
Interatomic potential for uranium in a wide range of pressures and temperatures.
Journal of Physics: Condensed Matter, 24(1):015702, 2012.

 

SvDC+03
Alejandro Strachan, Adri CT van Duin, Debashis Chakraborty, Siddharth Dasgupta, and William A Goddard III.
Shock waves in high-energy materials: The initial chemical events in nitramine RDX.
Physical Review Letters, 91(9):098301, 2003.

 

SvDG15
Sriram Goverapet Srinivasan, Adri CT van Duin, and P Ganesh.
Development of a ReaxFF potential for carbon condensed phases and its application to the thermal fragmentation of a large fullerene.
The Journal of Physical Chemistry A, 119(4):571-580, 2015.

 

SW85
F. H. Stillinger and T. A. Weber.
Computer simulation of local order in condensed phases of silicon.
Phys. Rev. B, 31(8):5262-5271, 1985.

 

Ter88a
J. Tersoff.
Empirical interatomic potential for silicon with improved elastic properties.
Physical Review B, 38:9902-9905, 1988.

 

Ter88b
J. Tersoff.
New empirical approach for the structure and energy of covalent systems.
Physical Review B, 37(12):6991, 1988.

 

Ter89
J. Tersoff.
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems.
Phys. Rev. B, 39(8):5566-5568, 1989.

 

Ter90
J. Tersoff.
Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems.
Physical Review B, 41(5):3248-3248, 1990.

 

Ter94
J. Tersoff.
Chemical order in amorphous silicon carbide.
Physical Review B, 49(23):16349, 1994.

 

THW+13
JP Trinastic, R Hamdan, Y Wu, L Zhang, and Hai-Ping Cheng.
Unified interatomic potential and energy barrier distributions for amorphous oxides.
The Journal of chemical physics, 139(15):154506, 2013.

 

TS02
Paul Tangney and Sandro Scandolo.
An ab initio parametrized interatomic force field for silica.
The Journal of chemical physics, 117(19):8898-8904, 2002.

 

TSZ+15
F Tavazza, TP Senftle, C Zou, CA Becker, and AC T van Duin.
Molecular dynamics investigation of the effects of tip-substrate interactions during nanoindentation.
The Journal of Physical Chemistry C, 119(24):13580-13589, 2015.

 

VBKVS90
BWH Van Beest, GJ Kramer, and RA Van Santen.
Force fields for silicas and aluminophosphates based on ab initio calculations.
Physical Review Letters, 64(16):1955, 1990.

 

WDLY10
Michael R. Weismiller, Adri C. T. van Duin, Jongguen Lee, and Richard A. Yetter.
ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion.
The Journal of Physical Chemistry A, 114(17):5485-5492, 2010.
PMID: 20384351.

 

WGM15
SR Wilson, KGSH Gunawardana, and MI Mendelev.
Solid-liquid interface free energies of pure bcc metals and B2 phases.
The Journal of chemical physics, 142(13):134705, 2015.

 

WKG09
JM Winey, Alison Kubota, and YM Gupta.
A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum.
Modelling and Simulation in Materials Science and Engineering, 17(5):055004, 2009.

 

WM15
SR Wilson and MI Mendelev.
Anisotropy of the solid-liquid interface properties of the Ni-Zr b33 phase from molecular dynamics simulation.
Philosophical Magazine, 95(2):224-241, 2015.

 

WMH06
PL Williams, Y Mishin, and JC Hamilton.
An embedded-atom potential for the Cu-Ag system.
Modelling and Simulation in Materials Science and Engineering, 14(5):817, 2006.

 

WT09
Henry H Wu and Dallas R Trinkle.
Cu/ag eam potential optimized for heteroepitaxial diffusion from ab initio data.
Computational Materials Science, 47(2):577-583, 2009.

 

WZWG12
Yin Wang, Ferdows Zahid, Jian Wang, and Hong Guo.
Structure and dielectric properties of amorphous high- κ oxides: HfO2, ZrO2 , and their alloys.
Phys. Rev. B, 85:224110, Jun 2012.

 

Yas96
Akio Yasukawa.
Using an extended Tersoff interatomic potential to analyze the static-fatigue strength of SiO2 under atmospheric influence.
JSME international journal. Ser. A, Mechanics and material engineering, 39(3):313-320, jul 1996.

 

Yas03
Akio Yasukawa.
An interatomic potential for strength analysis under atomospheric influence.
Ibaraki district conference, 2003:71-72, sep 2003.

 

YSP07
Jianguo Yu, Susan B. Sinnott, and Simon R. Phillpot.
Charge optimized many-body potential for the Si/SiO2 system.
Phys. Rev. B, 75:085311, Feb 2007.

 

ZCG+11
Zhenli Zhang, Alok Chatterjee, Christoph Grein, Anthony J Ciani, and Peter W Chung.
Atomic-scale modeling of InxGa1-xN quantum dot self-assembly.
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 29(3):03C133, 2011.

 

ZJ15
Xiaowang Zhou and Reese E. Jones.
Towards molecular dynamics simulations of InGaN nanostructures.
Technical Report SAND2015-4035C584006, Sandia National Laboratories (SNL-CA), Livermore, CA (United States), http://www.osti.gov/scitech/servlets/purl/1258140, May 2015.

 

ZJW04
XW Zhou, RA Johnson, and HNG Wadley.
Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers.
Physical Review B, 69(14):144113, 2004.

 

ZM03
Rajendra R Zope and Yu Mishin.
Interatomic potentials for atomistic simulations of the Ti-Al system.
Physical Review B, 68(2):024102, 2003.

 

ZWM+13
XW Zhou, DK Ward, JE Martin, FB van Swol, JL Cruz-Campa, and D Zubia.
Stillinger-Weber potential for the ii-vi elements Zn-Cd-Hg-S-Se-Te.
Physical Review B, 88(8):085309, 2013.

 

ZZvD+09
Luzheng Zhang, Sergey V Zybin, Adri CT van Duin, Siddharth Dasgupta, William A Goddard III, and Edward M Kober.
Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.
The Journal of Physical Chemistry A, 113(40):10619-10640, 2009.

 

ZZWH08
XW Zhou, JA Zimmerman, BM Wong, and JJ Hoyt.
An embedded-atom method interatomic potential for Pd-H alloys.
Journal of Materials Research, 23(03):704-718, 2008.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is a list of a few selected projects and cooperations which use TREMOLO-X as the primary tool for molecular dynamics simulations. This gives you an impression of what TREMOLO-X can do for you. If you are interested in licensing TREMOLO-X, please contact us.

Have a look at the Gallery and the Literature for additional simulation results obtained with TREMOLO-X.

  • Multi-scale simulation software for modelling of growth and diffusion in materials systems
    • BMBF, under the Eurostars project E!9389 MultiModel
  • Atomic-scale Modelling of novel metal-oxides in electronics
    • BMBF, under the Eurostars project E!6935 ATOMMODEL
  • CODICE - Computationally Driven design of Innovative Cement-based materials
    • EU: FP7 - Nanosciences, Nanotechnologies, Materials and new Production Technologie
  • ScaFaCoS – Scalable Fast Coulomb Solver
    • BMBF support program: Mathematik für Innovationen in Industrie und Dienstleistungen
  • Numeric Methods for Multiscale Models and Singular Phenomena
    • Collaborative Research Center 611 of the German Research Foundation (DFG)
  • Multiscale QM/MM simulations of the growth process and the material properties of inorganic nanotubes and nanotube composites
    • DFG Priority program 1165: Nanowires and Nanotubes - From Controlled Synthesis to Function
  • Inorganic Solids without Translational Symmetry – Synthesis, Structure and Modelling
    • Collaborative Research Center 408 of the German Research Foundation (DFG)
  • Cooperations
    • Asociacion CIC nanoGUNE - Self-Assembly
    • Labein Centro Technologico, Bilbao, Spain

[1] J. S. Dolado, M. Griebel, J. Hamaekers, and F. Heber. The nano-branched structure of cementitious calcium-silicate-hydrate gel. Journal of Materials Chemistry, 21:4445-4449, 2010.
bib | DOI ]

[2] A. M. Bittner, F. Heber, and J. Hamaekers. Biomolecules as soft matter surfaces. Surface Science, 603:1922-1925, 2009.
bib | DOI ]

[3] M. Griebel, J. Hamaekers, and F. Heber. A molecular dynamics study on the impact of defects and functionalization on the Young modulus of boron-nitride nanotubes. Computational Materials Science, 45(4):1097-1103, 2009.
bib | .pdf 1 ]

[4] H. Manzano, J. Dolado, M. Griebel, and J. Hamaekers. A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C-S-H) gels. physica status solidi (a) - applications and materials science, 205(6):1324-1329, 2008. Also as INS Preprint No. 0707.
bib | DOI | .pdf 1 ]

[5] J. S. Dolado, M. Griebel, and J. Hamaekers. A molecular dynamics study of cementitious silicate hydrate (C-S-H) gels. Journal of the American Ceramic Society, 90(12):3938-3942, 2007. Also as INS Preprint No. 0701.
bib | .ps.gz 1 | .pdf 1 ]

[6] M. Griebel and J. Hamaekers. Molecular dynamics simulations of boron-nitride nanotubes embedded in amorphous Si-B-N. Computational Materials Science, 39(3):502-517, 2007. Also as INS Preprint No. 0501.
bib | .ps.gz 1 | .pdf 1 ]

[7] M. Griebel and J. Hamaekers. Molecular dynamics simulations of the mechanical properties of polyethylene-carbon nanotube composites. In M. Rieth and W. Schommers, editors, Handbook of Theoretical and Computational Nanotechnology, volume 9, chapter 8, pages 409-454. American Scientific Publishers, 2006. Also as INS Preprint No. 0502.
bib | .html | .ps.gz 1 | .pdf 1 ]

[8] M. Griebel, J. Hamaekers, and R. Wildenhues. Molecular dynamics simulations of the influence of chemical cross-links on the elastic moduli of polymer-carbon nanotube composites. In J. Sanchez, editor, Proceedings 1st Nanoc-Workshop, LABEIN, Bilbao, Spain, 2005. Also as INS Preprint No. 0503.
bib | .pdf 1 ]

[9] M. Griebel and J. Hamaekers. Molecular dynamics of mechanical properties of boron-nitride nanotubes embedded in Si-B-N ceramics. In N. M. Ghoniem, editor, Conference Proceedings, Second International Conference on Multiscale Materials Modeling, pages 51-55, Mechanical and Aerospace Engineering Department, University of California Los Angeles, October 11-15 2004.
bib | .ps.gz 1 | .pdf 1 ]

[10] M. Griebel and J. Hamaekers. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Computer Methods in Applied Mechanics and Engineering, 193(17-20):1773-1788, 2004.
bib | .ps.gz 1 | .pdf 1 ]

[11] M. Griebel, L. Jager, and A. Voigt. Predicting material parameters for intrinsic point defect diffusion in silicon crystal growth. Solid State Phenomena, 95-96:35-40, 2004.
bib | .pdf 1 ]

[12] M. Griebel and J. Hamaekers. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. In D. Hui, editor, ICCE-10, pages 213-214, College of Engineering, University of New Orleans, July 20-26 2003. International Community for Composites Engineering.
bib | .ps.gz 1 | .pdf 1 ]

[13] S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel. Molecular simulation of the influence of chemical cross-links on the shear strength of carbon nanotube - polymer interfaces. Journal of Physical Chemistry B, 106(12):3046-3048, 2002.
bib | http ]

[14] A. Caglar and M. Griebel. On the numerical simulation of Fullerene nanotubes: C100.000.000 and beyond! In R. Esser, P. Grassberger, J. Grotendorst, and M. Lewerenz, editors, Molecular Dynamics on Parallel Computers, NIC, Jülich 8-10 February 1999. World Scientific, 2000.
bib | .ps.gz 1 ]

[15] S. J. V. Frankland, A. Caglar, D. W. Brenner, and M. Griebel. Reinforcement mechanisms in polymer nanotube composites: Simulated non-bonded and cross-linked systems. In Proceedings of the MRS Fall Meeting, 2000.
bib | .ps.gz 1 ]

 

Books

[1] M. Griebel, S. Knapek, and G. Zumbusch. Numerical Simulation in Molecular Dynamics. Springer, Berlin, Heidelberg, 2007.
bib | springer.de ]

[2] M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Moleküldynamik. Numerik, Algorithmen, Parallelisierung, Anwendungen. Springer, Berlin, Heidelberg, 2003.
bib | springer.de | amazon.de ]